Место нахождения нервной ткани. Нервная ткань. Болезни нервной системы

Всеми процессами в организме людей управляет нервная ткань. Именно строением ее клеток, их функциональными возможностями человек и отличается от животных. Однако, далеко не все знают, что головной мозг состоит из разных элементов, которые объединены в структурные единицы, несущие ответственность за регуляцию двигательной и чувствительной сферы организма. Подобная информация помогает специалистам лучше понимать неврологические и психиатрические болезни людей.

Основная составляющая головного мозга – нервная ткань, имеет клеточное строение. В ее основе нейроны, а также нейроглия – межклеточное вещество. Подобным строением нервной ткани обеспечены ее физиологические параметры – тканевое раздражение, последующее возбуждение, а также вырабатывание и передача сигналов.

Нейроны являются крупными функциональными единицами. Они состоят из следующих элементов:

  • ядро;
  • дендриты;
  • тело;
  • аксон.

В нейроглии присутствуют вспомогательные клетки – к примеру, астроциты плазматические, олигодендриты, шванновские клетки. Нейрон, как основная морфо-функциональная единица, как правило, состоит из нескольких дендритов, но всегда одного аксона – по нему перемещается потенциал действия от одной клетки к соседним. Именно с помощью этих окончаний в организме людей осуществляется связь между внутренними органами и головным мозгом.

В своей массе отростки нейронов образуют волокна, в которых осевой цилиндр распадается на чувствительные окончания и двигательные. Сверху они окружены множеством миелиновых и безмиелиновых клеток защитной оболочки.

Классификация

Среди существующих нервных клеток, специалисты традиционно выделяют следующие единицы, по количеству отростков и функциональной предназначенности:

Исходя из количества окончаний:

  • униполярные – с единичным отростком;
  • псевдоуниполярные – из двух ветвей одного и того же дендрита;
  • биполярные – имеется 1 дендрит и 1аксон;
  • мультиполярные – несколько дендритов, но 1 аксон.

По функциональным обязанностям:

  • воспринимающие – для принятия и передачи сигналов извне, а также от внутренних тканей;
  • контактные – промежуточные, которые обеспечивают обработку и проведение информации к двигательным нейронам;
  • двигательные – формируют управляющие сигналы, а затем передают их к остальным органам.

Дополнительные единицы периферической нерворегулирующей системы – леммоциты. Они обволакивают отростки нейронов и формируют безмиелиновую/ миелиновую оболочку. Их еще именую шванновскими клетками в честь первооткрывателя. Именно мембрана шванновской клетки, по мере обхвата аксона и формирования оболочки, способствует улучшению проводимости нервного импульса.

Специалисты обязательно выделяют в ткани мозга особые контакты нейронов, их синапсы, классификация которых зависит от формы передачи сигнала:

  • электрические – имеют значение в эмбриональном периоде развитии человека для процесса межнейронных взаимодействий;
  • химические – широко представлены у взрослых людей, они для передачи нервного импульса прибегают к помощи медиаторов, к примеру, в двигательных клетках для однонаправленности возбуждения по волокну.

Подобная классификация дает полное представление о сложном строении ткани головного мозга людей, как представителей подкласса млекопитающих.

Функции ткани

Особенности нейронов таковы, что физиологическими свойствами нервной ткани обеспечиваются сразу несколько функций. Так, она принимает участие в формировании основных структур мозга – центральной и периферической его части. В частности – от мелких узлов до коры полушарий. При этом образуется сложнейшая система с гармоничным взаимодействием.

Помимо строительных функций нервной ткани присуща обработка всей информации, поступающей изнутри, а также извне. Нейроны воспринимают, перерабатывают и анализируют данные, которые затем трансформируют в особые импульсы. Они по окончаниям аксонов поступают в кору мозга. При этом, от скорости проведения возбуждения напрямую зависит реакция человека на изменение в окружающей среде.

Мозг, в свою очередь, использует природные свойства нейронов для регулирования, а также согласования деятельности всех внутренних систем организма – с помощью синаптического контакта и рецепторов. Это позволяет человеку адаптироваться к изменившимся условиям, сохраняя целостность системы жизнедеятельности – благодаря коррекции передачи импульса.

Химический состав ткани

Специфика гистологии паренхимы мозга заключается в присутствии гематоэнцефалического барьера. Именно он обеспечивает избирательную проницаемость химических метаболитов, а также способствует накоплению отдельных компонентов в межклеточном веществе.

Поскольку структура нервной ткани состоит из серого вещества – тел нейронов, и белого – аксонов, то их внутренняя среда имеет отличия по химическому составу. Так, больше воды присутствует в сером веществе – на долю сухого остатка не более 16%. При этом половину занимают белки, а еще треть – липиды. Тогда как особенности строения нервных клеток белого вещества – нейроны структур центральной части мозга, предусматривают меньшее количество воды, и больший процент сухого остатка. Его насчитывают до 30%. К тому же и липидов вдвое больше, чем белков.

Белковые вещества в главных и вспомогательных клетках ткани мозга представлены альбуминами и нейроглобулинами. Реже присутствует нейрокератин – в оболочках нервных волокон и аксонных отростках. Множество белковых соединений свойственно медиаторам – мальтаза либо фосфатаза, а также амилаза. Медиатор поступает в синапс и этим ускоряет импульсы.

Присутствует в химическом составе углеводы – глюкоза, пентаза, а также гликоген. Имеются и жиры в минимальном объеме – холестерол, фосфолипиды, либо цереброзиды. Не менее важны микроэлементы, передающие нервный импульс по нервному волокну – магний, калий, натрий и железо. Они принимают участие в продуктивной интеллектуальной деятельности людей, регулируют функционирование мозга в целом.

Свойства ткани

В организме людей основными свойствами нервной ткани специалисты указывают:

  1. Возбудимость – способность клетки иметь ответную реакцию на раздражители. Свойство проявляется непосредственно в двух видах – возбуждение нервной реакции либо ее торможение. Если первое может свободно перемещаться от клетки к клетке и даже внутрь ее, то торможение ослабляет либо даже препятствует деятельности нейронов. В этом взаимодействии и заключается гармоничность функционирования структур головного мозга человека.
  2. Проводимость – обусловлено природной способностью нейроцитов перемещать импульсы. Процесс можно представить следующим образом – в единичной клетке возник импульс, он перемещается на соседние участки, а при переходе в отдаленные зоны меняет в них концентрацию ионов.
  3. Раздражимость – переход клеток из состояния покоя в прямо ему противоположное, их активность. Для этого требуются провоцирующие факторы, которые поступают из окружающей ткань среды. Так, рецепты глаз реагируют на яркий свет, тогда как клетки височной доли мозга – на громкий звук.

Если одно из свойств нервной ткани нарушено, то люди утрачивают сознание, а психические процессы вовсе прекращают свою деятельность. Подобное происходит при использовании наркоза дл оперативного вмешательств – нервные импульсы полностью отсутствуют.

Специалисты на протяжении столетий изучают строение, функции, состав и свойства нервной ткани. Однако, они и в настоящее время знают о ней далеко не все. Природа преподносит людям все новые загадки, разгадать которые пытаются великие умы человечества.

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον - волокно, нерв) - клетка с одним длинным отростком - аксоном, и одним/несколькими короткими - дендритами.

Спешу сообщить, что представление, будто короткий отросток нейрона - дендрит, а длинный - аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит - отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон - отросток нейрона, по которому импульс перемещается от тела нейрона.

Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.


Миелиновая оболочка

Отростки нейронов покрыты жироподобным веществом - миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.

Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь - рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов - а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.


Нейроглия

Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения - нейроглии. Нейроглия - вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная - поддерживает нейроны в определенном положении
  • Изолирующая - ограничивает нейроны от соприкосновения с внутренней средой организма
  • Регенераторная - в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая - с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии - шванновских клеток. Между ними хорошо заметны перехваты Ранвье - участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.


Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.


Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие - они передают возбуждение (нервный импульс) от рецепторов в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные - они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны - они передают нервный импульс (возбуждение) из ЦНС на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов - коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.


Синапс

На схеме выше вы наверняка заметили новый термин - синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс "преобразуется" в химический: происходит выброс особых веществ - нейромедиаторов (наиболее известный - ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula - пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.


Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.


Нервы и нервные узлы

Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы - или ганглии (от др.-греч. γάγγλιον - узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных - плечевое сплетение.


Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Существует тяжелое мышечное заболеванием - миастения (от др.-греч. μῦς - «мышца» и ἀσθένεια - «бессилие, слабость»), при котором собственные антитела разрушают мотонейроны.


Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом - опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к

Нервная ткань представлена нейронами и нейроглией.

Нервные клетки – нейроны состоят из тела и отростков. Содержат: мембрану, нейроплазму, ядро, тигроид, аппарат Гольджи, лизосомы, митохондрии.

Нейроны – основные клетки нервной системы, непохожие в разных отделах ни по строению, ни по назначению. Одни из них ответственны за восприятие раздражения из внешней или внутренней среды организма и передачу его в центральную нервную систему (ЦНС). Они называются чувствительными (афферентными) нейронами. В ЦНС импульс передается на вставочные нейроны, а окончательный ответ на первоначальное раздражение поступает к рабочему органу по двигательным (эфферентным) нейронам.

По внешнему виду нервные клетки отличаются от всех ранее рассмотренных клеток. Нейроны имеют отростки.

Один из них – аксон. Он действительно только один в каждой клетке. Его длина колеблется от 1 мм до десятков сантиметров, а диаметр 1-20 мкм. От него под прямым углом могут отходить тонкие веточки. По аксону от центра клетки постоянно перемещаются пузырьки с ферментами, гликопротеидами и нейросекретами. Некоторые из них движутся со скоростью 1-3 мм в сутки, что принято обозначать как медленный ток, другие же движутся со скоростью 5-10 мм в час (быстрый ток). Все эти вещества подводятся к кончику аксона.

Другой отросток нейрона называется дендритом . У каждого нейрона от 1 до 15 дендритов. Дендриты многократно ветвятся, что увеличивает поверхность нейрона, а значит и возможность контакта с другими клетками нервной системы. Многодендритные клетки называются мультиполярными , их большинство. В сетчатке глаза и в аппарате звуковосприятия внутреннего уха расположены биполярные клетки, имеющие аксон и один дендрит. Истинных униполярных клеток (т.е. когда имеется один отросток: аксон или дендрит) в теле человека нет.

Только молодые нервные клетки (нейробласты) имели один отросток (аксон). Зато почти все чувствительные нейроны можно назвать псевдоуниполярными , так как от тела клетки отходит один лишь отросток («уни»), но в дальнейшем распадается на аксон и дендрит.

Нервных клеток без отростков не бывает.

Аксоны проводят нервные импульсы от тела нервной клетки к другим нервным клеткам или тканям рабочих органов.

Дендриты проводят нервные импульсы к телу нервной клетки.

Нейроглия представлена несколькими видами мелких клеток (эпиндемоцитами, астроцитами, олигодендроцитами). Они ограничивают нейроны друг от друга, удерживают их на месте, не давая нарушить налаженную систему связей (разграничительная и опорная функции), обеспечивают в них обмен веществ и восстановление, поставляя питательные вещества (трофическая и регенераторная функции), выделяют некоторые медиаторы (секреторная функция), фагоцитируют все генетически чуждое (защитная функция).



Виды нейронов


Тела нейронов , расположенные в ЦНС, образуют серое вещество , а за пределами головного и спинного мозга их скопления называются ганглиями (узлами).

Отростки нервных клеток – как аксоны, так и дендриты в ЦНС образуют белое вещество , а на периферии они образуют волокна, в совокупности дающие нервы. Различают два варианта нервных волокн: покрытые миелиновой оболочкой – миелиновые (или мякотные), и немиелинизированные (безмякотные) – не покрытые миелиновой оболочкой.

Пучки миелиновых и безмиелиновых волокн, покрытые соединительно-тканной оболочкой эпиневрием образуют нервы.

Нервные волокна заканчиваются концевыми аппаратами – нервными окончаниями. Окончания дендритов псевдоуниполярных чувствительных (афферентных) клеток расположены во всех внутренних органах, сосудах, костях, мышцах, суставах, в коже. Они называются рецепторами. Они воспринимают раздражение, которое передается по цепи нервных клеток до эфферентного нейрона, с которого перейдет на мышцу или железу, запуская ответ на раздражение. Данная мышца или железа носит название эффектора. Ответная реакция организма на внешние или внутренние раздражения при участии нервной системы была названа в середине 17 века французским философом Р.Декартом рефлексом.

Путь рефлекса по организму, начиная от рецептора через всю цепочку нейронов и заканчивая эффектором, носит название рефлекторной дуги .

Структуры, обеспечивающие связь нейронов друг с другом.

В ЦНС нервные клетки связаны друг с другом посредством синапсов.

Синапс это место контакта двух нейронов.

Одно нервное волокно может образовывать до 10 тысяч синапсов на многих нервных клетках.

Синапсы бывают: аксосоматические, аксодендритические, аксо-аксональные.

Синапс состоит из 3-х компонентов:

1. Пресинаптическая ме 1. Пресинаптическая мембрана (1) принадлежит

кончику аксона того нейрона, который возбужден и стремится с способен передать свое возбуждение дальше.

2. Постсинаптическая мембрана (2), находящаяся на теле нейрона или его отротростках, на которые необходимо передать нервный

3. Синаптическая щель (3), находящаяся между этими двумя мембранами и через нее происходит передача нервного импульса.

В окончании аксона (в синаптической бляшке) перед пресинаптической мембраной скапливаются пузырьки с медиаторами (4), которые поступают сюда в основном благодаря быстрому току и отчасти – медленному. Когда распространяющийся по мембране аксона нервный импульс, достигает пресинаптической мембраны, пузырьки «вскрываются» в синаптическую щель, изливая в нее медиатор. Это биологически активное химическое вещество «возбуждает» постсинаптическую мембрану. Воздействие медиатора воспринимается как химический стимул, происходит мгновенная деполяризация мембраны и сразу вслед за этим ее реполяризация, т.е. рождается потенциал действия. А это значит, что нервный импульс передается через синапс на другой нейрон или рабочий орган.

Синапсы по механизму передачи возбуждения подразделяются на 2 вида:

1. Синапсы с химической передачей.

2. Синапсы с электрической передачей нервного импульса. В отличие от первых, в синапсе с электрической передачей медиатора нет, синаптическая щель очень узкая и пронизана каналами, сквозь которые, ионы легко передаются к постсинаптической мембране, и возникает ее деполяризация, а затем и реполяризация и нервный импульс проводится на другую нервную клетку.

Синапсы в зависимости от выделяющегося в синаптическую щель медиатора, подразделяются на 2 вида:

1. Возбуждающие синапсы – в них под влиянием нервного импульса, освобождается возбуждающий медиатор (ацетилхолин, норадреналин, глутамат, серотонин, дофамин).

2. Тормозные синапсы – в них освобождаются тормозные медиаторы (ГАМК – гамма-аминомаслянная кислота) – под их влиянием уменьшается проницаемость постсинаптической мембраны, что препятствует дальнейшему распространению возбуждения. Через тормозные синапсы нервный импульс не проводится – он там тормозится.

МЕТОДИЧЕКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ

к самостоятельной подготовке

второе высшее образование "психология" в формате MBA

предмет: Анатомия и эволюция нервной системы человека.

Методичка "Анатомия центральной нервной системы"
4.2. Нейроглия
4.3. Нейроны

4.1. Общие принципы строения нервной ткани

Нервная ткань, как и другие ткани человеческого организма, состоит из клеток и межклеточного вещества. Межклеточное вещество является производным глиальных клеток и состоит из волокон и аморфного вещества. Сами нервные клетки делятся на две популяции:
1) собственно нервные клетки — нейроны, обладающие способностью вырабатывать и передавать электрические импульсы;
2) вспомогательные глиальные клетки

Схема строения нервной ткани:

Нейрон — это сложно устроенная высокоспециализированная клетка с отростками, способная генерировать, воспринимать, трансформировать и передавать электрические сигналы, а также способная образовывать функциональные контакты и обмениваться информацией с другими клетками.

С одной стороны, нейрон — это генетическая единица, так как чшкает из одного нейробласта, с другой стороны, нейрон — это функциональная единица, так как обладает способностью возбуждаться и реагирует самостоятельно. Таким образом, нейрон — это структурно-функциональная единица нервной системы.

4.2. Нейроглия

Несмотря на то, что глиоциты не способны непосредственно, подобно нейронам, участвовать в переработке информации, их функция чрезвычайно важна для обеспечения нормальной жизнедеятельности мозга. На один нейрон приходится примерно десять глиальных клеток. Нейроглия неоднородна, в ней выделяют микроглию и макроглию, причем последняя еще разделяется на несколько типов клеток, каждый из которых выполняет свои, специфические функции.
Разновидности глиальных клеток:

Микроглия. Представляет собой мелкие, продолговатой формы клетки, с большим количеством сильноветвящихся отростков. У них очень мало цитоплазмы, рибосом, слабо развитая эндоплазматическая сеть и имеются мелкие митохондрии. Микроглиальные клетки являются фагоцитами и играют значительную роль в иммунитете ЦНС. Они могут фагоцитировать (пожирать) болезнетворные микроорганизмы, попавшие в нервную ткань, поврежденные или погибшие нейроны или ненужные клеточные структуры. Их активность возрастает при различных патологических процессах, протекающих в нервной ткани. Например, их количество резко увеличивается после радиационного поражения мозга. В этом случае вокруг поврежденных нейронов собирается до двух десятков фагоцитов, которые утилизируют погибшую клетку.

Астроциты. Это клетки звездчатой формы. На поверхности астроцитов имеются образования — мембраны, которые увеличивают площадь поверхности. Эта поверхность граничит с межклеточным пространством серого вещества. Часто астроциты располагаются между нервными клетками и кровеносными сосудами мозга:

Нейроглиальные взаимоотношения (по Ф. Блум, А. Лейэерсон и Л. Хофстедтер, 1988):

Функции астроцитов различны:
1) создание пространственной сети, опоры для нейронов, своего рода «клеточного скелета»;
2) изоляция нервных волокон и нервных окончаний как друг от друга, гак и от других клеточных элементов. Скапливаясь на поверхности ЦНС и на границах серого и белого вещества, астроциты изолируют отделы друг от друга;
3)участие в формировании гематоэнцефалического барьера (барьера между кровью и тканью мозга) — обеспечивается поступление питательных веществ из крови к нейронам;
4) участие в регенерационных процессах в ЦНС;
5) участие в метаболизме нервной ткани — поддерживается активность нейронов и синапсов.

Олигодендроциты. Это мелкие овальные клетки с тонкими, короткими, маловетвящимися, немногочисленными отростками (откуда они и получили свое название). Находятся в сером и белом веществе вокруг нейронов, входят в состав оболочек и в состав нервных окончаний. Их основные функции — трофическая (участие в обмене веществ нейронов с окружающей тканью) и изолирующая (образование миелиновой оболочки вокруг нервов, что необходимо для лучшего проведения сигналов). Вариантом олигодендроцитов в периферической нервной системе являются шванновские клетки. Чаще всего они имеют округлую, продолговатую форму. В телах мало органелл, а в отростках мномитохондрий и эндоплазматической сети. Существует два основных варианта шванновских клеток. В первом случае одна глиальная клетка многократно обматывается вокруг осевого цилиндра аксона, формируя так называемое «мякотное» волокно:
Олигодендроциты (по Ф. Блум, А. Лейзерсон и Л. Хофстедтер, 1988):

Такие волокна называются «миелинизированными» из-за миелина — жироподобного вещества, образующего мембрану шванновской клетки. Так как миелин имеет белый цвет, то скопления аксонов, покрытых миелином, образует «белое вещество» мозга. Между отдельными глиальными клетками, покрывающими аксон, имеются узкие промежутки - перехваты Ранвье, но имени ученого, их открывшего. В связи с тем, что электрические импульсы движутся по мислинизированному волокну скачкообразно от одного перехвата к другому, такие волокна обладают очень высокой скоростью проведения нервных импульсов.

Во втором варианте в одну шванновскую клетку погружается сразу несколько осевых цилиндров, образуя нервное волокно кабельного типа. Такое нервное волокно будет иметь серый цвет, и оно характерно для вегетативной нервной системы, обслуживающей внутренние органы. Скорость проведения сигналов в нем на 1 -2 порядка ниже, чем в миелинизированном волокне.

Эпендимоциты. Эти клетки выстилают желудочки мозга, секретируя спинномозговую жидкость. Они участвуют в обмене ликвора и растворенных в нем веществ. На поверхности клеток, обращенных в спинномозговой канал, имеются реснички, которые своим мерцанием способствуют движению цереброспинальной жидкости.

Таким образом, нейроглия выполняет следующие функции:
1) формирование «скелета» для нейронов;
2) обеспечение защиты нейронов (механическая и фагоцитирующая);
3) обеспечение питания нейронов;
4) участие в образовании миелиновой оболочки;
5) участие в регенерации (восстановлении) элементов нервной ткани.

4.3. Нейроны

Ранее отмечалось, что нейрон — это высокоспециализированная клетка нервной системы. Как правило, он имеет звездчатую форму, благодаря чему в нем различают тело (сому) и отростки (аксон и дендриты). Аксон у нейрона всегда один, хотя он может ветвиться, образуя два и более нервных окончания, а дендритов может быть достаточно много. По форме тела можно выделить звездчатые, шаровидные, веретенообразные, пирамидные, грушевидные и т. д. Некоторые разновидности нейронов, отличаются по форме тела:

Классификация нейронов по форме тела:
1 — звездчатые нейроны (мотонейроны спинного мозга);
2 — шаровидные нейроны (чувствительные нейроны спинномозговых узлов);
3 — пирамидные клетки (кора больших полушарий);
4 — грушевидные клетки (клетки Пуркинье мозжечка);
5 — веретенообразные клетки (кора больших полушарий)

Другой, более распространенной классификацией нейронов является их разделение на группы по числу и строению отростков. В зависимости от их количества нейроны делятся на униполярные (один отросток), биполярные (два отростка) и мультиполярные (много отростков):

Классификация нейронов по количеству отростков:
1 — биполярные нейроны;
2 — псевдоуниполярные нейроны;
3 — мультилолярные нейроны

Униполярные клетки (без дендритов) не характерны для взрослых людей и наблюдаются только в процессе эмбриогенеза. Вместо них в организме человека имеются так называемые псевдоуниполярные клетки, у которых единственный аксон разделяется на две ветви сразу же после выхода из тела клетки. Биполярные нейроны имеют один дендрит и один аксон. Они имеются в сетчатке глаза и передают возбуждение от фоторецепторов к ганглионарным клеткам, образующим зрительный нерв. Мультиполярные нейроны (имеющие большое количество дендритов) составляют большинство клеток нервной системы.

Размеры нейронов колеблются от 5 до 120 мкм и составляют в среднем 10-30 мкм. Самыми большими нервными клетками человеческого тела являются мотонейроиы спинного мозга и гигантские пирамиды Беца коры больших полушарий. И те и другие клетки являются по своей природе двигательными, и их величина обусловлена необходимостью принять на себя огромное количество аксонов от других нейронов. Подсчитано, что на некоторых мотонейронах спинного мозга имеется до 10 тысяч синапсов.

Третья классификация нейронов — по выполняемым функциям. Согласно этой классификации, все нервные клетки можно разделить на чувствительные, вставочные и двигательные :

Рефлекторные дуги спинного мозга:
а — двухнейронная рефлекторная дуга; б — трехнейронная рефлекторная дуга;
1 — чувствительный нейрон; 2 — вставочный нейрон; 3 — двигательный нейрон;
4 — задний (чувствительный) корешок; 5 — передний (двигательный) корешок; 6 — задние рога; 7 — передние рога

Так как «двигательные» клетки могут посылать приказы не только мышцам, но и железам, то нередко к их аксонам применяют термин эфферентный, т. е. направляющий импульсы от центра к периферии. Тогда чувствительные клетки будут называться афферентными (по которым нервные импульсы движутся от периферии к центру).

Таким образом, все классификации нейронов можно свести к трем, наиболее часто применяемым:

Ткань состоит из клеток - нейронов и нейроглии (межклеточного вещества). Также она содержит рецепторные клетки.

- Нейроны . Нервные клетки, состоящие из ядра, органоидов и цитоплазматических отростков. Небольшим отросткам, подводящим к телу импульсы, дали название дендриты, более длинные и тонкие отростки называют аксонами.

- Клетки нейроглии в основном сосредоточены в ЦНС, где их количество в 10 раз превышает наличие нейронов. Они заполняют пространство между нервными клетками и обеспечивают их необходимыми питательными элементами.

Виды нейронов по количеству отростков

1.Имеют один отросток (униполярные);
2.Отросток делится на 2 ветви (псевдоуниполярные);
3.Два отростка: дендрит и аксон (биполярные);
4.Один аксон и много дендритов (мультиполярные).

Уникальное свойство нервной ткани

Нервная ткань, в отличие от остальных, имеет свойство передачи возбуждения по нервным волокнам. Такое свойство называется проводимостью и имеет свои закономерности распространения.

Функции нервной ткани

Строительная

Особенности строения нервной ткани, позволяют ей быть материалом для построения головного и спинного мозга. Также из нее полностью состоит периферическая нервная система, куда входят: нервные узлы, пучки нервов (волокна) и сами нервы.

Переработка поступающей информации

Нервные клетки выполняют следующие функции: восприятие и анализ информации раздражения и трансформацию данной информации в электрический импульс или сигнал, они наделены особой способностью вырабатывать для этого активные вещества.

Регулирование слаженной работы

Нервная ткань в свою очередь использует свойства нейронов для регулирования и согласования работы всех органов и систем организма человека. Кроме того, данная ткань помогает ему во время адаптироваться к неблагоприятным условиям внешней и внутренней среды.



Мочеобразование имеет три фазы:

Клубочковая фильтрация.

Канальцеваяреабсорбция.

Канальцевая секреция.

Клубочковаяфильтрация происходит в почечном тельце и путём ультрафильтрации плазмы крови из клубочка капилляров в просвет капсулы Боумена-Шумлянского. Фильтрация происходит приАД не менее 30 мм рт. ст. Это критическая величина, соответствующая минимальному пульсовому давлению.

Трёхслойный фильтр почечного тельца напоминает три сита, вставленных одно в другое. Фильтрат - первичная моча - образуется в количестве 125 мл/мин или 170-180 л в сутки и содержит все компоненты плазмы крови, кроме крупномолекулярного белка.

Фазы реабсорбции и секреции происходят в канальцах нефрона и начале собирательных трубочек. Эти процессы протекают параллельно, так как одни вещества преимущественно реабсорбируются, а другие - частично или полностью секретируются.

Реабсорбция - обратное всасывание в капилляры канальцевой сети из первичной мочи воды и других необходимых организму веществ: аминокислот, глюкозы, витаминов, электролитов, воды. Реабсорбция происходит как пассивно, с помощью диффузии и осмоса, т.е. без затраты энергии, так и активно, с участием ферментов и с затратой энергии (5).

Секреция - функция эпителия канальцев, благодаря которой из крови канальцевой капиллярной сети удаляются вещества, не прошедшие почечный фильтр или же содержащиеся в крови в больших количествах: белковые шлаки, лекарства, пестициды, некоторые краски и др. Для выведения этих веществ эпителий канальцев секретирует ферменты. Почечный эпителий может также синтезировать некоторые вещества, например, гиппуровую кислоту или аммиак, и выделять их непосредственно в канальцы.

Таким образом, секреция - процесс противоположный по направлению реабсорбции (реабсорбция осуществляется из канальцев в кровь; секреция - из крови в канальцы).

В почечных канальцах происходит своеобразное «разделение труда».

В проксимальном канальце происходит максимальнаяреабсорбция воды и всех растворённых в ней веществ - до 65- 85% фильтрата. Сюда же секретируются почти все вещества, кроме калия. Микроворсинки почечного эпителия увеличивают площадь всасывания.

В петле Генле происходит реабсорбция основных ионов электролитов и воды (15-35% фильтра).

В дистальном канальце и собирательных трубочках секретируются ионы калия и реабсорбируется вода. Здесь начинает формироваться конечная моча (рис. 20.6).

В выведении из организма белковых шлаков, лекарств и других чужеродных веществ большую роль играет секреция.

Образование конечной мочи

Конечнаямоча образуется в собирательных трубочках со скоростью 1 мл/мин или 1-1,5 л/сут. Содержание в ней шлаков в десятки раз превышает содержание их в крови (мочевины - в 65 раз, креатинина - в 75 раз, сульфатов - в 90 раз), что объясняется концентрацией мочи, в основном в петле Генле и собирательных трубочках. Это связано с прохождением петель Генле и собирательных трубочек через мозговой слой почки, тканевая жидкость которого имеет высокую концентрацию ионов натрия, что стимулирует реабсорбцию воды в кровь (поворотно-противоточный механизм).

Таким образом, мочеобразование - сложный процесс, в котором принимают участие клубочковая фильтрация, канальцевая активная и пассивная реабсорбция, канальцевая секреция, экскретируемые из организма вещества. В связи с этим почкам необходимо большое количество кислорода (в 6-7 раз больше на единицу массы, чем мышцам).

Механизм мочеобразования

Моча образуется путём фильтрации крови почками и является сложным продуктом деятельности нефронов. Вся кровь, содержащаяся в организме (5-6 литров) проходит через почки за 5 минут, а в течение суток через них протекает 1000-1500 л. крови. Такой обильный кровоток позволяет за короткое время удалить все вредные для организма вещества.

мочеиспускание фильтрация реабсорбция цвет

Процесс образования мочи в нефронах состоит из 3-х этапов: фильтрация, реабсорбция (обратное всасывание) и канальцевая секреция.

I. Фильтрация осуществляется в мальпигиевом тельце нефрона и возможна из-за высокого гидростатического давления в капиллярах клубочков, которое создаётся благодаря тому, что диаметр приносящей артериолы больше, чем выносящей. Это давление заставляет профильтровываться из кровеносных капилляров клубочка в просвет окружающей их капсулы Боумена-Шумлянского жидкую часть крови - воду с растворёнными в ней органическими и неорганическими веществами (глюкоза, минеральные соли и др.). При этом профильтроваться могут вещества только с низкой молекулярной массой. Вещества же с большой молекулярной массой (белки, форменные элементы крови - эритроциты, лейкоциты, тромбоциты) не могут пройти через стенку капилляра из-за своих крупных размеров. Образовавшаяся в результате фильтрации жидкость называется первичной мочой и по химическому составу сходна с плазмой крови. В течение суток образуется 150-180 литров первичной мочи.

II. Реабсорбция (обратное всасывание) осуществляется в извитых и прямых канальцах нефрона, куда поступает первичная моча. Эти канальцы оплетены густой сетью кровеносных сосудов, благодаря чему из почечных канальцев обратно в кровяное русло всасываются все те компоненты первичной мочи, которые ещё нужны организму - вода, глюкоза, многие соли, аминокислоты и другие ценные компоненты. Всего реабсорбируется 98% первичной мочи, при этом происходит её концентрация. В результате за сутки из 180 литров первичной мочи образуется 1,5-2 литра конечной (вторичной) мочи, которая по своему составу резко отличается от первичной.

III. Канальцевая секреция это конечный этап мочеобразования. Он заключается в том, что клетки почечных канальцев при участии специальных ферментов осуществляют активный перенос из кровеносных капилляров в просвет канальцев ядовитых продуктов обмена веществ: мочевину, мочевую кислоту, креатин, креатинин и другие.

Регуляция деятельности почек осуществляется нервно-гуморальным путём.

Нервная регуляция осуществляется вегетативной нервной системой. При этом симпатические нервы являются сосудосуживающими и, следовательно, уменьшают количество мочи. Парасимпатические нервы являются сосудорасширяющими, т.е. увеличивают приток крови к почкам, в результате чего диурез повышается.

Гуморальная регуляция осуществляется за счёт гормонов вазопрессина и альдостерона.

Вазопрессин (антидиуретический гормон) вырабатывается в гипоталамусе, а накапливается в задней доле гипофиза. Он обладает сосудосуживающим действием, а также увеличивает проницаемость стенки почечных канальцев для воды, способствуя её обратному всасыванию. Это приводит к снижению мочеотделения и повышению концентрации мочи. При избытке вазопрессина может наступить полное прекращение мочеобразования. Недостаток вазопрессина вызывает развитие тяжёлого заболевания - несахарный диабет (мочеизнурение), при котором выделяется очень большое количество мочи (до 10 литров в сутки), но, в отличие от сахарного диабета, сахар в моче отсутствует.

Альдостерон - гормон коры надпочечников. Он способствует выведению ионов К+ и реабсорбции ионов Na+ в канальцах нефронов. Это приводит к повышению осмотического давления крови и задержке воды в организме. При недостатке альдостерона, наоборот, происходит потеря организмом Na+ и повышение уровня К+, что ведёт к обезвоживанию организма.

Акт мочеиспускания

Конечная моча из почечных лоханок по мочеточникам поступает в мочевой пузырь. В наполненном пузыре моча оказывает давление на его стенки, раздражая механорецепторы слизистой оболочки. Возникшие импульсы по афферентным (чувствительным) нервным волокнам поступают в центр мочеиспускания, расположенный во 2-4 крестцовых сегментах спинного мозга, и далее - в кору больших полушарий, где возникает ощущение позыва к мочеиспусканию. Отсюда импульсы по эфферентным (двигательным) волокнам поступают к сфинктеру мочеиспускательного канала и происходит мочеиспускание. Кора больших полушарий принимает участие в произвольной задержке мочеиспускания. У детей этот корковый контроль отсутствует и вырабатывается с возрастом.