Мощность гэс и выработка энергии. Гидроэлектростанция, принцип работы, конструкция и составляющие Что делает гэс

Проект строительства гидростанции на Волге впервые был рассмотрен еще в начале прошлого века. В 1910 году талантливый самарский инженер Г.М.Кржижановский (впоследствии председатель комиссии ГОЭЛРО) обратился к царскому правительству с предложением построить гидростанцию на Волге у Жигулей. Но только в 1919 году по предложению Ленина Глебу Максимилиановичу было дано поручение выбрать место для гидроузла. Обследовав район, Кржижановский предложил три варианта размещения будущей ГЭС: в районе села Переволоки, на Красной Глинке близ Самары и у села Отважное ниже города Ставрополя. В 1940 году на Красной Глинке был заложен поселок Управленческий (), в котором должен был разместиться штаб строительства гидростанции. Но началась Великая Отечественная война и все работы были приостановлены. Дополнительные гидро-геологические исследования, проведенные в послевоенные годы, подсказали целесообразность строительства ГЭС близ села Отважное. Здесь в 1950 году развернулась гигантская стройка, в ходе которой была построена самая большая в стране плотина, огромный машинный зал и мощные судоходные шлюзы.



01. Берег Волги, перед началом строительства ГЭС, 1950 год.

02. Начало освоения территории стройплощадки. Начальником строительства Куйбышевской гидроэлектростанции был назначен генерал-майор Иван Васильевич Комзин.

03. Ни для кого не секрет, что на стойке трудились тысячи заключенных. В основном, они содержались в Кунеевском лагере, на месте будущего Комсомольского района г. Тольятти. В пик строительства, в 1955 году, количество заключенных достигло 46000!

05. Подготовка котлована станции

06. Хотя, стоит отдать должное руководству, на строительстве использовалась самая современная на тот момент техника - земснаряды, экскаваторы, самосвалы.

07. Подготовка плавучего моста на месте будущей водосливной плотины.

08. Строительство водосливной плотины

09. Всего, при строительстве станции уложено 7 миллионов кубометров бетона.

10. Водосливная плотина

11. Водосливная бетонная плотина расположена на левобережной пойме. Длина плотины-1 км. Она имеет 38 водосливных пролетов. На водобое плотины имеются устройства для гашения энергии воды. Для маневрирования затворами на плотине смонтированы 3 козловых крана, грузоподъемностью 250 тонн.

12. Фрагмент стройки рядом с машинным залом.

13. На стройку часто приезжали правительственные делегации и комиссии.

14. Бетонный завод.

15. Работа земснаряда. Земснаряды использовались для намыва земляной плотины.

16. Установка рабочего колеса гидротурбины.

17. Земляная плотина намыта из местных мелкозернистых песков и расположена между зданием ГЭС и водосливной плотиной. Длина плотины составляет 2800 м, ширина по основанию – 600 м. Наибольшая высота в русловой части – 50 м.

18. Строительство машинного зала

19. В строительстве были задействованы водолазы. Один из водолазных костюмов хранится в музее Жигулевской ГЭС ().

20. Одновременно, на левом берегу Волги, строились двухниточные судоходные шлюзы.

21. Фрагмент шлюза

22. Нижние шлюзы

24. Верхние шлюзы

25. Проверка крепления высоковольтной ЛЭП

26. Цементный завод в Яблоневом овраге

27. Строительство понтонного моста между зданием ГЭС и земляной плотиной.

29. Чтобы перекрыть естественное русло, на дно Волги, менее чем за сутки, было сброшено 1765 десятитонных пирамид из железобетона.

31. Волга была перекрыта за рекордные 19 часов и 35 минут.

32. Вода пошла через донные водосбросы станции

33. Началось наполнение Куйбышевского водохранилища.

34. Торжественный митинг, по поводу успешного перекрытия Волги.

35. Вверх от ГЭС разлилось водохранилище протяженностью более 600 км. Наибольшую ширину – 40 км – водохранилище имеет в районе слияния Волги и Камы. Максимальная глубина в приплотинной части – 40 м. Емкость водохранилища – 58 млрд. кубометров, оно является самым крупным искуственным водохранилищем в Европе.

36. В зону затопления попали 270 населенных пунктов (17 городов и райцентров), 19 колхозов, две машинно-тракторные станции (МТС), 175 зданий различных учреждений и организаций, расположенных вне Ставрополя. Переносу подлежали также населеннее пункты, не входившие в зону затопления, но лежащие в зоне отвода земель для строительства плотины и других сооружений гидроузла. Всего в 1953 году было перенесено более 1600 дворов, а также школы, больницы, промпредприятия.

37. 10 августа 1958 года состоялась церемония торжественного пуска ГЭС. На торжества в Ставрополь прибыли руководители КПСС и Советского правительства во главе с Н.С. Хрущевым.

Небольшая справка:
Здание Жигулевской ГЭС (старые названия - Куйбышевская ГЭС, Волжская ГЭС им. Ленина) расположено на правом берегу Волги. Оно состоит из 10 двухагрегатных секций с донными водосбросами. В машинном зале установлены 20 гидроагрегатов мощностью по 115 МВт (сейчас идёт модернизация и увеличение мощности) с поворотно-лопастными турбинами (диаметр рабочего колеса – 9,3 м) и генераторами зонтичного типа (диаметр ротора – 14,3 м, статора – 17,1 м).

Общая длина здания ГЭС вместе с монтажной площадкой – 730 м, ширина – 100 м, высота от подошвы до кровли – 80 м. Строительный объем здания – 4500 тыс. кубометров. Здание ГЭС имеет пристройку со стороны нижнего бьефа, которая сделана для выравнивания перепада напряжения под зданием и водоемом, и предупреждения пластического выпора грунта из-под подошвы сооружения. Отдельное сороудерживающее сооружение, расположенное в 33 м от здания ГЭС, введено впервые в практике гидротехнического строительства.

Посмотрите ещё мои записи о Жигулевской ГЭС: ,

Мои фотоподборки об истории строительства других ГЭС: ,

Просьба при использовании на других интернет-ресурсах, не забываем ставить ссылку на первоисточник.

Приглашаю всех в группу вКонтакте (

Введение

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния. С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.

Одни из первых гидроэлектрических установок мощностью всего в несколько сотен ват были сооружены в 1876-1881 годах в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние. Сооружение линии электропередачи (170 км) от Лауфенской ГЭС до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международная электротехническая выставки (1891) открыла широкие возможности для развития ГЭС. В 1892 году промышленный ток дала ГЭС, построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были построены ГЭС в Гельшене (Швеция), на реке Изар (Германия) и в Калифорнии (США). В 1896 году вступила в строй Ниагарская ГЭС (США) постоянного тока; в 1898 дала ток ГЭС Рейнфельд (Германия), а в 1901 стали под нагрузку гидрогенераторы ГЭС Жонат (Франция).

Убедительными сведеньями о первой в мире ГЭС можно считать и информацию о первой гидроэлектростанции Хорватии в городке Шибеник (1885 год). Напряжение переменного тока мощностью 230 кВт служило для городского освещения.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт. Полученная энергия освещала производственные помещения, обеспечивала работу телефонной станции, и питала электронасосы для откачки воды из рудниковых шахт.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски Негаданный и Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

На 2012 год гидроэнергетика обеспечивает производство до 21% всей электроэнергии в мире, установленная энергетическая мощность гидроэлектростанций (ГЭС) достигает 715 ГВт. Лидерами по выработке гидроэнергии в абсолютных значениях являются: Китай, Канада, Бразилия; а на душу населения - Норвегия, Исландия и Канада. Крупнейшими мировыми гидроэлектростанциями являются:

· Три ущелья (Китай, река Янцзы) - 22,4 ГВт,

· Итайпу (Бразилия, река Парана) - 14 ГВт,

· Гури (Венесуэла, река Карони) 10,3 ГВт,

· Тукуруи (Бразилия, река Токантинс) - 8,3 ГВт,

· Гранд-Кули (США, река Колумбия) - 6,8 ГВт,

· Саяно-Шушенская (Россия, река Енисей) 6,4 ГВт,

· Красноярская (Россия, река Енисей) 6 ГВт,

· Робер-Бурасса (Канада, река Ла-Гранд) 5,6 ГВт,

· Черчилл-Фолс (Канада, река Черчил) - 5,4 ГВт,

По состоянию на 2011 год в России имеется 15 действующих, достраиваемых и находящихся в замороженном строительстве гидравлических электростанций свыше 1000 МВт и более сотни гидроэлектростанций меньшей мощности.

При этом по экономическому потенциалу гидроэнергоресурсов Россия занимает второе место и мире (порядка 852 млрд. кВт ч.) после Китая, однако, по степени их освоения - 20% - уступает практически всем развитым странам и многим развивающимся государствам. Степень износа оборудования большинства российских гидростанций превышает 40%, а по некоторым ГЭС этот показатель достигает 70%, что связано с системной проблемой всей гидроэнергетической отрасли и ее хроническим недофинансированием.

1. Основные виды ГЭС

Русловые и плотинные ГЭС

Плотина; 2 - затворы; 3 - максимальный уровень верхнего бьефа; 4 - минимальный уровень верхнего бьефа; 5 - гидравлический подъёмник; 6 - сороудерживающая решётка; 7 гидрогенератор; 8 - гидравлическая турбина; 9 - минимальный уровень нижнего бьефа; 10 - максимальный паводковый уровень

Приплотинные ГЭС

Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

Плотина; 2 - водовод; 3 - площадка электротехнического оборудования высокого напряжения; 4 - здание машинного зала ГЭС.

Деривационные гидроэлектростанции:

Деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние - спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида - безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище - такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

Схема деривационной гидроэлектрической станции: 1 - плотина; 2 водоподъёмник; 3 - отстойник; 4 - деривационный канал; 5 - бассейн суточного регулирования; 6 - напорный бассейн; 7 - турбинный водовод; 8 - распределительное устройство; 9 - здание ГЭС; 10 - водосброс; 11 - подъездные пути

Гидроаккумулирующие электростанции:

Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

Приливные ГЭС (ПЭС):

Особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. В приливных электростанциях используется перепад уровней воды (колебания уровня воды у берега могут достигать 12 метров), образующийся во время прилива и отлива. Для этого отделяют прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Затем воду выпускают, и она вращает гидротурбины которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов).

. Принцип действия ГЭС. Основные сооружения и оборудование гидроэлектростанций

Гидроэлектростанция − это комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию.

Гидроэлектростанции являются составной частью гидроузла - комплекса гидротехнических сооружений, предназначенных для использования водных ресурсов в интересах народного хозяйства: получения электрической энергии, ирригации, водоснабжения, улучшения условий судоходства, защиты от наводнений, рыбоводства и др.

Мощность гидравлического потока зависит от расхода и напора. Скорость потока воды в реке изменяется по ее длине с изменением сечения русла и гидравлического уклона. Для концентрации мощности и сосредоточения напора реки в каком-либо одном месте возводят гидротехнические сооружения: плотину, деривационный канал.

Водосбросные сооружения перепускают воду из верхнего бьефа в нижний во избежание превышения максимального расчетного уровня воды в период паводка, сбрасывает лед, шугу и т.п.

Если река судоходна, то к плотине примыкают шлюзы (судоподъемники) с подходными каналами для пропуска судов и плотов через гидроузел, перевалки грузов и пересадки пассажиров с водного на сухопутный транспорт и пр.

Для обеспечения отбора и подачи воды неэнергетическим потребителям в состав гидроузла входят водоприемные сооружения и насосные станции.

Рыбохозяйственные сооружения - это рыбоходы и рыбоподъемники для пропуска через гидроузел ценных пород рыб к местам постоянных нерестилищ, рыбозащитные сооружения и сооружения для искусственного рыборазведения. Иногда рыбу пропускают через шлюзы в процессе шлюзования судов.

Для связи объектов гидроузла между собой, соединения их с сетью государственных автомобильных и железных дорог, а также для пропуска этих дорог через сооружения гидроузла строят транспортные сооружения: мосты, дороги и др.

Для выработки электроэнергии и ее распределения потребителям в состав гидроузла входят различные энергетические сооружения. К ним относятся: водоприемные устройства и водоводы, подводящие воду из верхнего бьефа к турбинам и отводящие воду в нижний бьеф; здание гидроэлектростанций с гидротурбинами, гидрогенераторами и трансформаторами; вспомогательное механическое и подъемно - транспортное оборудование; пульт управления; открытые распределительные устройства, предназначенные для приема и распределения энергии.

Принцип действия ГЭС заключается в следующем: плотина образует водохранилище, обеспечивая постоянный напор воды. Вода входит в водоприемник и, пройдя по напорному водоводу, вращает гидротурбину, которая приводит в действие гидрогенератор. Выходное напряжение гидрогенераторов повышается трансформаторами для передачи на распределительные подстанции и затем потребителям.

Напор создаётся концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно. Деривацией в гидротехнике называют совокупность сооружений, осуществляющих отвод воды из реки, водохранилища или другого водоёма, транспортировку её к станционному узлу ГЭС, насосной станции, а также отвод воды от них. Различают деривацию безнапорную и напорную. Напорная деривация - трубопровод, напорный туннель, применяется, когда колебания уровня воды в месте её забора или отвода значительны. При малых колебаниях уровня может применяться как напорная, так и безнапорная деривация. Тип деривации выбирается с учётом природных условий района на основании технико-экономического расчёта. Протяжённость современных деривационных водоводов достигает нескольких десятков километров, пропускная способность более 2000 м 3 /сек. Основное энергетическое оборудование размещается в здании ГЭС: в машинном зале электростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления пульт оператора-диспетчера или автооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию. По установленной мощности различают мощные (свыше 250 МВт), средние (до 25 МВт) и малые (до 5 МВт). Мощность ГЭС зависит от напора (разности уровней верхнего и нижнего расхода воды Q (м 3 /сек)), используемого в гидротурбинах, и КПД гидроагрегата.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации - до 1500 м.

Одними из самых важных составляющих ГЭС считаются гидрогенераторы и гидротурбины.

Гидротурбины.

Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала.

По принципу действия гидротурбины делят на реактивные (напороструйные) и активные (свободноструйные). Вода к рабочему колесу поступает либо через сопла (в активных гидротурбинах), либо через направляющий аппарат (в реактивных гидротурбинах).

Наиболее распространённой разновидностью активной гидротурбины является ковшовая турбина . Ковшовые турбины конструктивно сильно отличаются от наиболее распространенных реактивных гидротурбин (радиально-осевых, поворотно-лопастных), у которых рабочее колесо находится в потоке воды. В ковшовых турбинах вода подается через сопла по касательной к окружности, проходящей через середину ковша. Вода, проходя через сопло, формирует струю, летящую с большой скоростью и ударяющую о лопатку турбины, после чего колесо проворачивается, совершая работу. После отклонения одной лопатки под струю подставляется другая. Процесс использования энергии струи происходит при атмосферном давлении, а производство энергии осуществляется только за счет кинетической энергии воды. Лопатки турбины имеют двояковогнутую форму с острым лезвием посередине; задача лезвия - разделять струю воды с целью лучшего использования энергии. Ковшовые гидротурбины применяются при напорах более 200 метров (чаще всего 300-500 метров и более), при расходах до 100 м³/сек. Мощность наиболее крупных ковшовых турбин может достигать 200-250 МВт и более. При напорах до 700 метров ковшовые турбины конкурируют с радиально-осевыми, при больших напорах их использование безальтернативно. Как правило, ГЭС с ковшовыми турбинами построены по деривационной схеме, поскольку получить столь значительные напоры при помощи плотины проблематично. Преимуществами ковшовых турбин является возможность использования очень больших напоров, а также небольших расходов воды. Недостатки турбины - неэффективность при небольших напорах, невозможность использования как насоса, высокие требования к качеству подаваемой воды.

Радиально-осевая турбина (турбина Френсиса ) - реактивная турбина. В рабочем колесе турбин данного типа поток сначала движется радиально (от периферии к центру), а затем в осевом направлении (на выход). Применяют при напорах до 600 м. Мощность до 640 МВт.

Основным преимуществом турбин данного типа является самый высокий оптимальный КПД из всех существующих типов. Недостаток - менее пологая рабочая характеристика, чем у поворотно-лопастной гидротурбины.

Поворотно-лопастная турбина (турбина Каплана) - реактивная турбина, лопасти которой могут поворачиваться вокруг своей оси одновременно, за счёт чего регулируется её мощность. Также мощность может регулироваться с помощью лопаток направляющего устройства. Лопасти гидротурбины могут быть расположены как перпендикулярно её оси, так и под углом. Поток воды в поворотно-лопастной турбине движется вдоль её оси. Ось турбины может располагаться как вертикально, так и горизонтально. При вертикальном расположении оси поток перед поступлением в рабочую камеру турбины закручивается в спиральной камере, а затем спрямляется с помощью обтекателя. Это необходимо для равномерной подачи воды на лопасти турбины, а значит, уменьшения её износа. Применяется в основном на средненапорных ГЭС.

Диагональная турбина - реактивная турбина, используемая на средних и высоких напорах. Диагональная турбина представляет собой поворотно-лопастную турбину, лопасти которой расположены под острым (45-60°) углом к оси вращения турбины. Такое расположение лопастей позволяет увеличить их количество (до 10-12 штук) и применять турбину на более высоких напорах. Диагональные турбины применяются на напорах от 30 до 200 метров, конкурируя на низких напорах с классическими поворотно-лопастными турбинами, а на высоких - с радиально-осевыми турбинами. По сравнению с последними, диагональные турбины имеют несколько более высокий КПД, но конструктивно более сложны и более подвержены износу.

Гидрогенератор - электрическая машина, предназначенная для выработки электроэнергии на гидроэлектростанции. Обычно гидрогенератор представляет собой синхронную явнополюсную электрическую машину вертикального исполнения, приводимую во вращение от гидротурбины, хотя существуют и гидрогенераторы горизонтального исполнения (в том числе капсульные гидрогенераторы).

Гидрогенераторы имеют сравнительно малую частоту вращения (до 500 об/мин) и достаточно большой диаметр (до 20 м), чем в первую очередь определяется вертикальное исполнение большинства гидрогенераторов, так как при горизонтальном исполнении становится невозможным обеспечение необходимой механической прочности и жесткости элементов их конструкции.

На гидроаккумулирующих электростанциях используются обратимые гидрогенераторы (гидрогенераторы-двигатели), которые могут как вырабатывать электрическую энергию, так и потреблять ее. От обычных гидрогенераторов они отличаются особой конструкцией подпятника, позволяющей ротору вращаться в обе стороны.

Гидрогенераторы для ГЭС специально проектируются соответственно частоте вращения и мощностью гидротурбин, для которых они предназначаются. Гидрогенераторы на большую единичную мощность обычно устанавливают вертикально на подпятниках с соответствующими направляющими подшипниками. Они, как правило, трехфазные и рассчитаны на стандартную частоту. Система воздушного охлаждения - замкнутая, с теплообменниками воздух - вода.

3. Преимущества и недостатки ГЭС

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами, в отличии от выбросов СО 2 , производимыми ТЭС и возможными авариями на АЭС, которые могут понести за собой глобальные катастрофические последствия.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Плотины часто перекрывают рыбам путь к нерестилищам, нарушают естественное течение рек, приводят к развитию застойных процессов, снижают способность к «самоочищению», а следовательно резко изменяют качество воды.

Себестоимость производимой энергии на ГЭС гораздо ниже, чем на атомных и тепловых электростанциях, и они способны быстрее выходить на режим выдачи рабочей мощности после включения, однако их строительство обходится дороже.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко. Минимальный срок службы ГЭС - около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

Заключение

гидроэлектростанция турбина себестоимость энергия

Потенциал гидроэнергетики можно определить, суммировав все существующие на планете речные стоки. Расчёты показали, что мировой потенциал равен пятидесяти миллиардам киловатт в год. Но и эта весьма впечатляющая цифра составляет лишь четверть от количества осадков, ежегодно выпадающих во всём мире.

С учётом условий каждого конкретного региона и состояния мировых рек действительный потенциал водных ресурсов составляет от двух до трёх миллиардов киловатт. Эти цифры соответствуют годовой выработке энергии в 10000 - 20000 миллиардов киловатт в час.

Чтобы осознать потенциал гидроэнергетики, выраженный этими цифрами, следует сопоставить полученные данные с показателями нефтяных теплоэлектростанций. Чтобы получить такое количество электроэнергии, станциям, работающим на нефти, требовалось бы около сорока миллионов баррелей нефти каждый день.

Вне всяких сомнений, гидроэнергетика в перспективе не должна оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов.

Это понимают многие специалисты и поэтому проблема сохранения природной среды при активном гидротехническом строительстве актуальна как никогда. В настоящее время особенно важен точный прогноз возможных последствий строительства гидротехнических объектов. Он должен дать ответ на многие вопросы, касающиеся возможности смягчения и преодоления нежелательных экологических ситуаций, которые могут возникнуть при строительстве. Кроме того, необходима сравнительная оценка экологической эффективности будущих гидроузлов. Правда, до реализации таких планов ещё далеко, так как сегодня разработка методов определения экологического энергопотенциала не производится.

Список источников

1.Непорожний П.С., Обрезков В.И.; «Введение в специальность: гидроэлектроэнергетика.» изд. Москва, 1982 г.

Дробнис В.Ф. «Гидравлика и гидравлические машины», изд. Москва, 1987 г.

Общий принцип работы гидроэлектростанции известен, наверное, всем. Вода, переходя из верхнего бьефа в нижний, вращает колесо турбины. От турбины приводится в движение генератор, который собственно и производит электричество. Но все самое интересное – в подробностях.

Кстати, для того чтобы получить 1 квт-ч электрической энергии, требуется спуск 14 тонн воды с высоты 27 м.

В отличие, например, от тепловых станций, устроенных совершенно однотипно, каждая гидроэлектростанция устроена со своими особенностями. То есть, не существует некоей однотипной ГЭС. Они отличаются по расходу и напору воды, обьему водохранилища, по географическим критериям местности: климат, грунт, рельеф, близость моря.

Вот машинный за, вполне обычный, разве что окна искусственные (с подсветкой): зал находится на глубине 76 м внутри скалы.

Это машинный зал первой в СССР подземной гидроэлектростанции, к ней с поверхности земли подведены четыре водовода, имеющие диаметр 6 м.

Для извлечения из зала оборудования при необходимости его замены или ремонта в скале вырублена шахта:

Сбросные сооружения и затворы

Не всегда и не вся вода может использоваться для выработки энергии: часть ее сбрасывается мимо ГЭС. Это бывает необходимо при паводке весной (если отсутствует водохранилище многолетнего регулирования), при ремонте агрегатов, при необходимости холостого сброса воды для пропуска мальков рыб по течению и по другим причинам. На Беломорской ГЭС холостой водосброс – это три затвора.

Вопрос резервирования очень важен, ведь если вовремя не понизить в водохранилище уровень воды, это будет иметь серьезные последствия. Для поднятия и опускания затворов предусмотрены козловые краны и электрические лебедки, есть и ручной привод.

Когда затвор поднят, происходит холостой сброс воды для Беломорского водозабора, который расположен ниже по течению.

При обледенении затвора используется индукционный подогрев: обогрев одного затвора требует 150кВт.

Для этой же цели возможно применение барботажа – пропускание воздуха вдоль затвора из глубины, с помощью шлангов системы сжатого воздуха.

Для гашения кинетической энергии воды при сбросе используются различные способы: столкновение потоков, ступени, водобойные колодцы. Например, на Волховской ГЭС – водобойная плита с гасителями.

О рыбе

Нижнетуломская ГЭС для того, чтобы семга могла подняться вверх по течению на нерест, имеет специальный рыбоход, имитирующий горный ручей. В его конструкции предусмотрены и камни на дне, и зигзагообразные проходы, и места для отдыха рыбы.

В период нереста ближайший к рыбоходу гидроагрегат отключают, чтобы его шум не мешал рыбе найти ручей и плыть в правильном направлении.

Безопасность

В результате аварийного прорыва воды ГЭС может остаться без электричества даже для собственных нужд, поэтому предусматриваются резервные источники: аккумуляторы, аварийные дизель-генераторы.

Еще один компонент системы обеспечения безопасности – аэрационные трубы, которые есть к примеру в верхней части водоводных труб Кондопожской ГЭС.

Аэрационные трубы монтируются для защиты водоводов при образовании в них глубокого вакуума, от которого их стальные стенки могут разорваться. Этот вакуум возникает в ситуации резкого опорожнения водовода после закрытия верхних затворов. По аэрационным же трубам они заполняются воздухом, что предотвращает деформацию.

Остатки водовода 1930-х годов из дерева.

Защитная стенка (в центре кадра) предусмотрена для той ситуации, если водовод все-таки прорвется.

Стенка перенаправит водный поток так, что он обойдет станцию с левой стороны, а не через здание администрации и уйдет в нижний бьеф по выемке.

Контроль и управление

На следующем фото видны турбина, генератор и вал, который их соединяет. Слева виднеется схема гидроагрегата, на которую выведены гидроманометры, которые показывают давление в системе смазки.

Внизу – гидравлические приводы направляющего аппарата.

В машинном зале можно проследить за другими параметрами: уровни воды в бьефах, температура воздуха и воды.

Мнемосхема

Данный гидроагрегат не работает. Мощность и частота вращения ротора равны нулю, закрыт направляющий аппарат.

Вода из спиральной камеры турбины снизу забирается и подается на охладители генератора (охладитель – в центре схемы, он красного цвета, охладители А и Б), а также на смазку подпятника, верхнего (ВГП) и нижнего (НГП) генераторных подшипников. Подшипники смазываются водой, нагреваемая вода отправляется на рыбзавод. Справа – красный бак с маслом – относится к гидравлической системе управления направляющим аппаратом. Также здесь можно видеть уровни и расходы и давления всех жидкостей.

Вибрация

Вибрация очень опасна: к примеру, на Саяно-Шушенской станции гидроагрегат был разрушен именно из-за нее. Точнее, из-за усталостного разрушения шпилек крепления крышки турбины по причине вибраций, которые возникли при переходе гидроагрегата через диапазон «запрещенной зоны».

На центральном пульте управления ГЭС можно увидеть, где эта «запрещенная зона» расположена.

Гидроагрегаты Г1, Г3, Г4 работают. Г2 – остановлен. На черном фоне отображается мощность, вырабатываемая генераторами 38,1/38/38 МВт соответственно. Красные столбики Г3 и Г4 свидетельствуют о работе на полную мощность, в Г1 еще имеется резерв. Красная зона за столбиками – диапазон мощности, при которой нежелательна работа гидроагрегата, при пуске и остановке ее необходимо быстро миновать.

Узнать, какой гидроагрегат не работает можно еще до входа в здание.

Когда противовесы подняты – значит, затворы на соответствующих турбинных водоводах опущены. Активно внедряется удаленное управление. При этом диспетчер должен держать под контролем и учитывать взаимное влияние ГЭС в каскаде, значения уровней воды в водохранилищах, потребности потребителей по электричеству и воде. На основании этих сведений происходит распределение выработки электроэнергии между станциями.

Гидроэлектростанция

Гидроэлектроста́нция (ГЭС) - электростанция , в качестве источника энергии использующая энергию водного потока . Гидроэлектростанции обычно строят на реках , сооружая плотины и водохранилища .

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Крупнейшие ГЭС в мире

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Три ущелья 22,40 100,00 р. Янцзы , г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана , г. Фос-ду-Игуасу , Бразилия /Парагвай
Гури 10,30 40,00 р. Карони , Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс , Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) 23,50 ОАО РусГидро р. Енисей , г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей , г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара , г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга , г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга , г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея , пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) 3,31 (2,2) ОАО РусГидро р. Волга , г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга , г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея , г. Зея
Нижнекамская ГЭС 1,25 (0,45) 2,67 (1,8) ОАО «Генерирующая компания», ОАО «Татэнерго » р. Кама , г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья , пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама , г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак , п. Дубки

Примечания:

Другие гидроэлектростанции России

Предыстория развития гидростроения в России

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО , который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика . Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации . Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями . Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  • Карта крупнейших ГЭС России (GIF, данные 2003 года)

Добыча электроэнергии гидроэнергетикой происходит с использованием энергии движущейся воды. Дожди, тающий снег обычно с холмов и гор создают ручьи и реки, которые в конечном итоге текут в океан. Энергия этой движущейся воды может быть существенной (по рафтингу известно).

Эта энергия используется на протяжении веков. Еще древние греки использовали колеса воды, чтобы размолоть пшеницу в муку. Помещенное в реке, колесо под воздействием воды поворачивается. Кинетическая энергия реки вращает колесо и преобразуется в механическую энергию, на которой работает мельница.

Развитие гидроэнергетики

В конце XIX века гидроэнергетика стала источником для добычи электроэнергии. Первая ГЭС была построена в Ниагара-Фолс в 1879 году. В 1881 году уличные фонари в городе Ниагара-Фолс были запитаны энергией гидроэнергетики. В 1882 году первая гидроэлектростанция (ГЭС) в мире начала действовать в Соединенных Штатах в Эпплтон, Висконсин. На самом деле ГЭС и угольные электростанции добычу электроэнергии производят аналогичным образом. В обоих случаях используется для включения пропеллер, называемый турбиной, которая затем поворачивает через вал и вращает электрический генератор, который производит электричество. Угольные электростанции используют пар для вращения турбинных лопаток, а гидроэлектростанции используют падающую воду – результаты совпадают.

Во всем мире производят около 24 процентов электроэнергии в мире обеспечивая более 1 миллиарда человек энергией. ГЭС в мире имеет выход в общей сложности 675 000 мегаватт, энергетический эквивалент 3,6 миллиарда баррелей нефти, согласно мировой лаборатории возобновляемых источников энергии.

Как получается электричество из воды

Электричество из воды гидроэлектростанции получают благодаря воде. Типичная ГЭС представляет собой систему с трех частей:

Вода за плотиной протекает через плотину и толкает винт в турбине, вращая его. Турбина вращает генератор для добычи электроэнергии. Количество добытой электроэнергии, которая может быть сгенерирована зависит сколько воды движется через систему. Электричество может передаваться на заводы и предприятия через общую энергосистему.

ГЭС обеспечивает почти пятую часть электроэнергии в мире. Китай, Канада, Бразилия, Соединенные Штаты Америки и Россия пять крупнейших производителей гидроэлектроэнергии. Одна из крупнейших гидроэлектростанций в мире -«Три ущелья» на реке Янцзы в Китае. Плотина имеет 2,3 км в ширину и 185 метров в высоту.

Гидроэнергетика является самым дешевым способом получения электроэнергии сегодня. Это потому, что после того, как была построена плотина и оборудование установлено, источник энергии - проточная вода - бесплатно. Это источник чистого топлива, возобновляемый ежегодно со снегов и осадков.

Количество электроэнергии, которое производит ГЭС зависит от двух факторов:

  1. Высоты водопада: чем с большей высоты вода падает, тем больше энергии она имеет. Как правило расстояние, с которого вода падает зависит от размера плотины. Чем выше плотины, дальше вода падает, и тем больше энергии она имеет. Ученые говорят, что сила падающей воды «пропорционально» расстоянию падения.
  2. Количества падающей воды. Больше воды, протекающей через турбину будет производить больше энергии. Количество воды на турбине зависит от количество воды текущей вниз по реке. Большие реки имеют более проточную воду и могут производить больше энергии.

Добыча электроэнергии в гидроэнергетике легко регулируема, операторы могут контролировать поток воды через турбину для производства электроэнергии по требованию. Кроме того искусственные водохранилища могут использоваться для отдыха, плавания или гребли.

Но перекрытие рек может уничтожить или нарушить дикую природу и другие природные ресурсы. Некоторым видам рыбы, как лосось, могут быть перекрыты пути на нерест. Гидроэлектростанции могут также вызвать низкий уровень растворенного кислорода в воде, которая является вредной для обитания речной фауны.